Congruences involving $g_n(x)=\sum_{k=0}^n\binom nk^2\binom{2k}kx^k$
Abstract
Define $g_n(x)=\sum_{k=0}^n\binom nk^2\binom{2k}kx^k$ for $n=0,1,2,...$. Those numbers $g_n=g_n(1)$ are closely related to Apéry numbers and Franel numbers. In this paper we establish some fundamental congruences involving $g_n(x)$. For example, for any prime $p>5$ we have $$\sum_{k=1}^{p-1}\frac{g_k(-1)}{k}\equiv 0\pmod{p^2}\quad{and}\quad\sum_{k=1}^{p-1}\frac{g_k(-1)}{k^2}\equiv 0\pmod p.$$ This is similar to Wolstenholme's classical congruences $$\sum_{k=1}^{p-1}\frac1k\equiv0\pmod{p^2}\quad{and}\quad\sum_{k=1}^{p-1}\frac{1}{k^2}\equiv0\pmod p$$ for any prime $p>3$.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2014
- DOI:
- arXiv:
- arXiv:1407.0967
- Bibcode:
- 2014arXiv1407.0967S
- Keywords:
-
- Mathematics - Number Theory;
- Mathematics - Combinatorics;
- 11A07;
- 11B65;
- 05A10;
- 05A30;
- 11B75
- E-Print:
- 22 pages, final published version