Beyond Geometry : Towards Fully Realistic Wireless Models
Abstract
Signalstrength models of wireless communications capture the gradual fading of signals and the additivity of interference. As such, they are closer to reality than other models. However, nearly all theoretic work in the SINR model depends on the assumption of smooth geometric decay, one that is true in free space but is far off in actual environments. The challenge is to model realistic environments, including walls, obstacles, reflections and anisotropic antennas, without making the models algorithmically impractical or analytically intractable. We present a simple solution that allows the modeling of arbitrary static situations by moving from geometry to arbitrary decay spaces. The complexity of a setting is captured by a metricity parameter Z that indicates how far the decay space is from satisfying the triangular inequality. All results that hold in the SINR model in general metrics carry over to decay spaces, with the resulting time complexity and approximation depending on Z in the same way that the original results depends on the path loss term alpha. For distributed algorithms, that to date have appeared to necessarily depend on the planarity, we indicate how they can be adapted to arbitrary decay spaces. Finally, we explore the dependence on Z in the approximability of core problems. In particular, we observe that the capacity maximization problem has exponential upper and lower bounds in terms of Z in general decay spaces. In Euclidean metrics and related growthbounded decay spaces, the performance depends on the exact metricity definition, with a polynomial upper bound in terms of Z, but an exponential lower bound in terms of a variant parameter phi. On the plane, the upper bound result actually yields the first approximation of a capacitytype SINR problem that is subexponential in alpha.
 Publication:

arXiv eprints
 Pub Date:
 February 2014
 arXiv:
 arXiv:1402.5003
 Bibcode:
 2014arXiv1402.5003B
 Keywords:

 Computer Science  Networking and Internet Architecture;
 Computer Science  Data Structures and Algorithms