Faster SVD-Truncated Least-Squares Regression
Abstract
We develop a fast algorithm for computing the "SVD-truncated" regularized solution to the least-squares problem: $ \min_{\x} \TNorm{\matA \x - \b}. $ Let $\matA_k$ of rank $k$ be the best rank $k$ matrix computed via the SVD of $\matA$. Then, the SVD-truncated regularized solution is: $ \x_k = \pinv{\matA}_k \b. $ If $\matA$ is $m \times n$, then, it takes $O(m n \min\{m,n\})$ time to compute $\x_k $ using the SVD of \math{\matA}. We give an approximation algorithm for \math{\x_k} which constructs a rank-\math{k} approximation $\tilde{\matA}_{k}$ and computes $ \tilde{\x}_{k} = \pinv{\tilde\matA}_{k} \b$ in roughly $O(\nnz(\matA) k \log n)$ time. Our algorithm uses a randomized variant of the subspace iteration. We show that, with high probability: $ \TNorm{\matA \tilde{\x}_{k} - \b} \approx \TNorm{\matA \x_k - \b}$ and $\TNorm{\x_k - \tilde\x_k} \approx 0. $
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2014
- DOI:
- 10.48550/arXiv.1401.0417
- arXiv:
- arXiv:1401.0417
- Bibcode:
- 2014arXiv1401.0417B
- Keywords:
-
- Computer Science - Data Structures and Algorithms;
- Mathematics - Numerical Analysis
- E-Print:
- 2014 IEEE International Symposium on Information Theory