Fingerprinting nonminimal Higgs sectors
Abstract
After the discovery of the standard modellike Higgs boson at the LHC, the structure of the Higgs sector remains unknown. We discuss how it can be determined by the combination of direct and indirect searches for additional Higgs bosons at future collider experiments. First of all, we evaluate expected excluded regions for the mass of additional neutral Higgs bosons from direct searches at the LHC with the 14 TeV collision energy in the two Higgs doublet models with a softly broken Z_{2} symmetry. Second, precision measurements of the Higgs boson couplings at future experiments can be used for the indirect search of extended Higgs sectors if the measured coupling constant with the gauge boson slightly deviates from the standard model value. In particular, in the two Higgs doublet model with the softly broken discrete symmetry, there are four types of Yukawa interactions, so that they can be discriminated by measuring the pattern of deviations in Yukawa coupling constants. Furthermore, we can fingerprint various extended Higgs sectors with future precision data by detecting the pattern of deviations in the coupling constants of the standard modellike Higgs boson. We demonstrate how the pattern of deviations can be different among various Higgs sectors that predict the electroweak rho parameter to be unity, such as models with additional an isospin singlet, a doublet, triplets, or a septet. We conclude that, as long as the gauge coupling constant of the Higgs boson slightly differs from the standard model prediction but is enough to be detected at the LHC and its highluminosity run or at the International Linear Collider, we can identify the nonminimal Higgs sector even without direct discovery of additional Higgs bosons at the LHC.
 Publication:

Physical Review D
 Pub Date:
 October 2014
 DOI:
 10.1103/PhysRevD.90.075001
 arXiv:
 arXiv:1406.3294
 Bibcode:
 2014PhRvD..90g5001K
 Keywords:

 12.60.Fr;
 Extensions of electroweak Higgs sector;
 High Energy Physics  Phenomenology
 EPrint:
 Version accepted in PRD