Generalized Hund's rule for twoatom systems
Abstract
Hund's rule is one of the fundamentals of the correlation physics at the atomic level, determining the ground state multiplet of the electrons. It consists of three laws: (i) maximum S (total spin), (ii) maximum L (total orbital angular momentum) under the constraint of (i), and (iii) the total angular momentum J is LS for electron number less than half, while J =L+S for more than half due to the relativistic spinorbit interaction (SOI). In real systems, the electrons hop between the atoms and gain the itinerancy, which is usually described by the band theory. The whole content of theories on correlation is to provide a reliable way to describe the intermediate situation between the two limits. Here we propose an approach toward this goal, i.e., we study the twoatom systems of three t_{2g} orbitals and see how the Hund's rule is modified by the transfer integral t between them. It is found that the competition between t and the Hund's coupling J at each atom determines the crossover from the molecular orbital limit to the strong correlation limit. Especially, the focus is on the generalization of the third rule, i.e., the inter and intraatomic SOI's in the presence of the correlation. We have found that there are cases where the effective SOI's are appreciably enhanced by the Hund's coupling. The conditions for the enhancement are the intermediate Hund's coupling and the filling of four or five electrons.
 Publication:

Physical Review B
 Pub Date:
 September 2014
 DOI:
 10.1103/PhysRevB.90.115122
 arXiv:
 arXiv:1409.7858
 Bibcode:
 2014PhRvB..90k5122I
 Keywords:

 31.15.aj;
 Relativistic corrections spinorbit effects fine structure;
 hyperfine structure;
 Condensed Matter  Strongly Correlated Electrons
 EPrint:
 10 pages, 8 figures