Ion flux asymmetry in radiofrequency capacitively-coupled plasmas excited by sawtooth-like waveforms
Abstract
Using particle-in-cell simulations, we predict that it is possible to obtain a significant difference between the ion flux to the powered electrode and that to the grounded electrode—with about 50% higher ion flux on one electrode—in a geometrically symmetric, radiofrequency capacitively-coupled plasma reactor by applying a non-sinusoidal, ‘Tailored’ voltage waveform. This sawtooth-like waveform presents different rising and falling slopes over one cycle. We show that this effect is due to differing plasma sheath motion in front of each electrode, which induces a higher ionization rate in front of the electrode which has the fastest positive rising voltage. Together with the higher ion flux comes a lower voltage drop across the sheath, and therefore a reduced maximum ion bombardment energy; a result in contrast to typical process control mechanisms.
- Publication:
-
Plasma Sources Science Technology
- Pub Date:
- December 2014
- DOI:
- 10.1088/0963-0252/23/6/065010
- Bibcode:
- 2014PSST...23f5010B