Activation of NLRP3 inflammasome by crystalline structures via cell surface contact
Abstract
Crystalline structures activate the NLRP3 inflammasome, leading to the production of IL-1β, however, the molecular interactions responsible for NLRP3 activation are not fully understood. Cathepsin B release from the ruptured phagolysosome and potassium ion efflux have been suggested to be critical for this activation. Here, we report that Cathepsin B redistribution was not a crucial event in crystal-induced IL-1β production. Silica and monosodium urate crystal-treated macrophages with undisturbed lysosomes demonstrated strong co-localization of ASC and Caspase-1, indicative of NLRP3 inflammasome activation. Importantly, we provided evidence to suggest that macrophage cell membrane binding to immobilized crystals was sufficient to induce IL-1β release, and this activation of the NLRP3 inflammasome was inhibited by blocking potassium efflux. Therefore, this work reveals additional complexity in crystalline structure-mediated NLRP3 inflammasome regulations.
- Publication:
-
Scientific Reports
- Pub Date:
- December 2014
- DOI:
- Bibcode:
- 2014NatSR...4.7281H