The ultimate step towards a tailored engineering of core@shell and core@shell@shell nanoparticles
Abstract
Complex core@shell and core@shell@shell nanoparticles are systems that combine the functionalities of the inner core and outer shell materials together with new physico-chemical properties originated by their low (nano) dimensionality. Such nanoparticles are of prime importance in the fast growing field of nanotechnology as building blocks for more sophisticated systems and a plethora of applications. Here, it is shown that although conceptually simple a modified gas aggregation approach allows the one-step generation of well-controlled complex nanoparticles. In particular, it is demonstrated that the atoms of the core and the shell of the nanoparticles can be easily inverted, avoiding intrinsic constraints of chemical methods.Complex core@shell and core@shell@shell nanoparticles are systems that combine the functionalities of the inner core and outer shell materials together with new physico-chemical properties originated by their low (nano) dimensionality. Such nanoparticles are of prime importance in the fast growing field of nanotechnology as building blocks for more sophisticated systems and a plethora of applications. Here, it is shown that although conceptually simple a modified gas aggregation approach allows the one-step generation of well-controlled complex nanoparticles. In particular, it is demonstrated that the atoms of the core and the shell of the nanoparticles can be easily inverted, avoiding intrinsic constraints of chemical methods.
Electronic supplementary information (ESI) available: 1: Scheme illustrating the different strategies to grow nanoparticles with controlled chemical composition and structure. 2: Examples of TEM results on Ag@Au nanoparticles. 3: Magnetic measurements results on Co@Au and Au@Co nanoparticles. See DOI: 10.1039/c4nr02913e- Publication:
-
Nanoscale
- Pub Date:
- October 2014
- DOI:
- 10.1039/c4nr02913e
- Bibcode:
- 2014Nanos...613483L