Bootstrap Percolation in PowerLaw Random Graphs
Abstract
A bootstrap percolation process on a graph is an "infection" process which evolves in rounds. Initially, there is a subset of infected nodes and in each subsequent round each uninfected node which has at least infected neighbours becomes infected and remains so forever. The parameter is fixed. Such processes have been used as models for the spread of ideas or trends within a network of individuals. We analyse this process in the case where the underlying graph is an inhomogeneous random graph, which exhibits a powerlaw degree distribution, and initially there are randomly infected nodes. The main focus of this paper is the number of vertices that will have been infected by the end of the process. The main result of this work is that if the degree sequence of the random graph follows a power law with exponent , where , then a sublinear number of initially infected vertices is enough to spread the infection over a linear fraction of the nodes of the random graph, with high probability. More specifically, we determine explicitly a critical function such that with the following property. Assuming that is the number of vertices of the underlying random graph, if , then the process does not evolve at all, with high probability as grows, whereas if , then there is a constant such that, with high probability, the final set of infected vertices has size at least . This behaviour is in sharp contrast with the case where the underlying graph is a random graph with . It follows from an observation of Balogh and Bollobás that in this case if the number of initially infected vertices is sublinear, then there is lack of evolution of the process. It turns out that when the maximum degree is , then depends also on . But when the maximum degree is , then.
 Publication:

Journal of Statistical Physics
 Pub Date:
 April 2014
 DOI:
 10.1007/s1095501409466
 arXiv:
 arXiv:1402.2815
 Bibcode:
 2014JSP...155...72A
 Keywords:

 Mathematics  Probability;
 Mathematics  Combinatorics;
 05C80;
 60K35
 EPrint:
 42 pages