Scaling fluctuation analysis and statistical hypothesis testing of anthropogenic warming
Abstract
Although current global warming may have a large anthropogenic component, its quantification relies primarily on complex General Circulation Models (GCM's) assumptions and codes; it is desirable to complement this with empirically based methodologies. Previous attempts to use the recent climate record have concentrated on "fingerprinting" or otherwise comparing the record with GCM outputs. By using CO_{2} radiative forcings as a linear surrogate for all anthropogenic effects we estimate the total anthropogenic warming and (effective) climate sensitivity finding: ∆ T _{ anth } = 0.87 ± 0.11 K, . These are close the IPPC AR5 values ∆ T _{ anth } = 0.85 ± 0.20 K and (equilibrium) climate sensitivity and are independent of GCM models, radiative transfer calculations and emission histories. We statistically formulate the hypothesis of warming through natural variability by using centennial scale probabilities of natural fluctuations estimated using scaling, fluctuation analysis on multiproxy data. We take into account two nonclassical statistical features—long range statistical dependencies and "fat tailed" probability distributions (both of which greatly amplify the probability of extremes). Even in the most unfavourable cases, we may reject the natural variability hypothesis at confidence levels >99 %.
 Publication:

Climate Dynamics
 Pub Date:
 May 2014
 DOI:
 10.1007/s0038201421282
 Bibcode:
 2014ClDy...42.2339L
 Keywords:

 Anthropogenic warming;
 Scaling;
 Natural climate variability;
 Statistical testing