Discovery of the Transient Magnetar 3XMM J185246.6+003317 near Supernova Remnant Kesteven 79 with XMM-Newton
Abstract
We report the serendipitous discovery with XMM-Newton that 3XMM J185246.6+003317 is an 11.56 s X-ray pulsar located 1' away from the southern boundary of supernova remnant Kes 79. The spin-down rate of 3XMM J185246.6+003317 is <1.1 × 10-13 s s-1, which, together with the long period P = 11.5587126(4) s, indicates a dipolar surface magnetic field of <3.6 × 1013 G, a characteristic age of >1.7 Myr, and a spin-down luminosity of <2.8 × 1030 erg s-1. Its X-ray spectrum is best-fitted with a resonant Compton scattering model and also can be adequately described by a blackbody model. The observations covering a seven-month span from 2008 to 2009 show variations in the spectral properties of the source, with the luminosity decreasing from 2.7 × 1034 erg s-1 to 4.6 × 1033 erg s-1, along with a decrease of the blackbody temperature from kT ≈ 0.8 keV to ≈0.6 keV. The X-ray luminosity of the source is higher than its spin-down luminosity, ruling out rotation as a power source. The combined timing and spectral properties, the non-detection of any optical or infrared counterpart, together with the lack of detection of the source in archival X-ray data prior to the 2008 XMM-Newton observation, point to 3XMM J185246.6+003317 being a newly discovered transient low-B magnetar undergoing an outburst decay during the XMM-Newton observations. The non-detection by Chandra in 2001 sets an upper limit of 4 × 1032 erg s-1 to the quiescent luminosity of 3XMM J185246.6+003317. Its period is the longest among currently known transient magnetars. The foreground absorption toward 3XMM J185246.6+003317 is similar to that of Kes 79, suggesting a similar distance of ~7.1 kpc.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- January 2014
- DOI:
- 10.1088/2041-8205/781/1/L16
- arXiv:
- arXiv:1310.7705
- Bibcode:
- 2014ApJ...781L..16Z
- Keywords:
-
- pulsars: individual: 3XMM J185246.6+003317;
- stars: magnetars;
- Astrophysics - High Energy Astrophysical Phenomena
- E-Print:
- 7 pages, 4 figures, 1 table