Using IPS Magnetic Modeling to Determine Bz
Abstract
Interplanetary scintillation (IPS) observations enable remote determinations of velocity and density in the inner heliosphere while also providing forecasts of these quantities. Using the global velocities inferred from IPS, and through convection upward of magnetic fields perpendicular to a source surface produced by the Current-Sheet Source Surface (CSSS) modified potential model (Zhao and Hoeksema, J. Geophys. Res., 100, 19, 1995), global long-duration radial and tangential heliospheric field components can also be determined. In order to better include short-term transient effects and derive a value for the field normal to these components (Bn) during periods where CMEs, are present, we have tested an extension to our current 3D vector-field analysis. This extension adds closed fields from below the source surface to the CSSS model values, and when traced outward from the sub-Earth point, three magnetic field components are present. These are compared to in-situ magnetic fields measured near Earth for several periods throughout the current solar cycle from the minimum between Solar Cycle 23 and 24 up until the present. We find a significant positive correlation when using this extension to current analyses including that of the Bn field for the test cases analyzed thus far.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2014
- Bibcode:
- 2014AGUFMSH21C4144J
- Keywords:
-
- 7524 Magnetic fields;
- SOLAR PHYSICS;
- ASTROPHYSICS;
- AND ASTRONOMY;
- 7536 Solar activity cycle;
- SOLAR PHYSICS;
- ASTROPHYSICS;
- AND ASTRONOMY;
- 7594 Instruments and techniques;
- SOLAR PHYSICS;
- ASTROPHYSICS;
- AND ASTRONOMY;
- 7938 Impacts on humans;
- SPACE WEATHER