Characteristics of long-term variation in the amlitude of the geomagnetic solar quiet (Sq) daily variation using the Inter-university Upper atmosphere Gobal Observation NETwork (IUGONET) data analysis system
Abstract
Characteristics of long-term variation in the amplitude of solar quiet geomagnetic field daily variation (Sq) have been investigated using 1-hour geomagnetic field data obtained from 69 geomagnetic stations in a period of 1947-2013. In the present data analysis, we took advantage of the IUGONET data analysis system. The Sq amplitude clearly showed a 10-12 year solar activity dependence and it tended to enhance during each solar maximum. During the minimum of solar cycle 23/24 in 2008-2009, the Sq amplitude became the smallest in the investigated period. The relationship between the solar F10.7 index and Sq amplitude is approximately linear but 64 percent of geomagnetic stations show a weak nonlinear dependence on the solar F10.7 index. In order to remove the effect of solar activity seen in the long-term variation of the Sq amplitude, we calculated a linear or second order fitting curve between the solar F10.7 index and Sq amplitude during 1947-2013, and examined the residual Sq amplitude, which is defined as the deviation from the fitting curve. As a result, a majority of the trends in the residual Sq amplitude that passed through a trend test showed a negative value in a wide region. This tendency was relatively strong in Europe, India, the eastern part of Canada, and New Zealand. The relationship between the magnetic field intensity and residual Sq amplitude showed an anti-correlation for about 71 percent of geomagnetic stations. On the other hand, the residual Sq amplitude in the equatorial station (Addis Ababa) was anti-correlated with the absolute value of the magnetic field inclination. This implies the movement of the equatorial electrojet due to the secular variation of the ambient magnetic field.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2014
- Bibcode:
- 2014AGUFMSA41C4075S
- Keywords:
-
- 0310 Airglow and aurora;
- 2427 Ionosphere/atmosphere interactions;
- 2431 Ionosphere/magnetosphere interactions;
- 2494 Instruments and techniques