Determination of ITM Key Parameters By the Ionospheric Connection Explorer (ICON)
Abstract
Selected for development by NASA in 2013, ICON is a mission that will launch in 2017 to discover the source of strong day-to-day variability in Earth's space environment. Recent observations continue to raise questions about the effects and interaction of these in our geospace environment, and how these vary between extremes in solar activity. To address these, ICON will measure all key parameters of the atmosphere and ionosphere simultaneously and continuously with a combination of remote sensing and in-situ measurements. ICON will fly in a 27-degree inclination orbit with a payload designed to observe the processes of vertical wave coupling in the Ionosphere/Thermosphere/Mesosphere system, how these processes influence the state of the system itself, and how that state preconditions the system for modification by external influence (e.g. solar and solar wind forcing). ICON will remotely observe winds and temperatures in the 90-150 km region while measuring the highly variable electric field in the ionosphere on magnetically connected field lines. Simultaneous to these observations, ICON remotely observes the thermospheric composition and density, and ionospheric density in day and night. The retrievals involved and resultant precision in the determination of key parameters will be presented. The scientific return from ICON is enhanced by dynamic operational modes of the observatory that provide capabilities well beyond that afforded by a static space platform. Careful selection of these modes and the selective implementation of instrument redundancy provide the ability to operate with large technical margins that support the greatest return of science data.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2014
- Bibcode:
- 2014AGUFMSA21A4038I
- Keywords:
-
- 0358 Thermosphere: energy deposition;
- 2407 Auroral ionosphere;
- 2409 Current systems;
- 7954 Magnetic storms