Fish like it Hot? The response of ichthyolith accumulation to changing climates of the Paleogene
Abstract
It has been hypothesized that the production of fish in the water column is related to the amount of primary production in the surface waters. Most future Earth scenarios suggest that as the climate warms, increased surface ocean stratification will decrease nutrient availability and therefore net primary productivity and fish production. Here we calculate accumulation rates of ichthyoliths (microfossil fish teeth and shark dermal scales) throughout the Paleogene and find that ichthyolith accumulation is inversely related to hypothesized changes in primary productivity, but is positively related to ocean temperature. At DSDP Site 596 in the South Pacific, and ODP Site 1258 from the equatorial Atlantic, accumulation of fish fossils increase 6-10 fold from the relatively cool Paleocene into the warm Early Eocene Climate Optimum. In contrast, cooling and increased biosilica deposition at the Eocene/Oligocene (E/O) Boundary suggests that the marine ecosystem switched to a highly productive diatom-dominated ocean, which should favor short, efficient food chains and increased fish production. However, we find that at both Pacific DSDP Site 596 and Atlantic DSDP Site 522, fish accumulation drops by about 50% across the E/O. Indeed, this relation between ichthyolith accumulation and δ18O-estimated paleotemperature is also seen in the Oligocene, at North Pacific ODP Site 886, where warming in the middle Oligocene is mirrored by an increase in ichthyolith accumulation. It appears that ichthyolith accumulation rate may not be purely an effect of total primary production in the water column but rather, may reflect a fundamental response in fish physiology or ecosystem efficiency to warmer water. It has been documented that respiration is faster and more efficient in warm waters, and this may help generate more efficient food web links that compensate for any decrease in primary productivity caused by global warming. Indeed, it appears that fish seem to thrive as the temperature goes up.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2014
- Bibcode:
- 2014AGUFMPP13C..08S
- Keywords:
-
- 4901 Abrupt/rapid climate change;
- PALEOCEANOGRAPHY;
- 4928 Global climate models;
- PALEOCEANOGRAPHY;
- 4944 Micropaleontology;
- PALEOCEANOGRAPHY;
- 4950 Paleoecology;
- PALEOCEANOGRAPHY