Avoiding Drought Risks and Social Conflict Under Climate Change
Abstract
Traditional drought research has mainly focused on physical drought risks and less on the cultural processes that also contribute to how drought risks are perceived and managed. However, as society becomes more vulnerable to drought and climate change threatens to increase water scarcity, it is clear that drought research would benefit from a more interdisciplinary approach. To assess avoided drought impacts from reduced climate change, drought risks need to be assessed in the context of both climate prediction as well as improved understanding of socio-cultural processes. To this end, this study explores a risk-based framework to combine physical drought likelihoods with perceived risks from stakeholder interviews. Results are presented from a case study on how stakeholders in south-central Oklahoma perceive drought risks given diverse cultural beliefs, water uses, and uncertainties in future drought prediction. Stakeholder interviews (n=38) were conducted in 2012 to understand drought risks to various uses of water, as well as to measure worldviews from the cultural theory of risk - a theory that explains why people perceive risks differently, potentially leading to conflict over management decisions. For physical drought risk, drought projections are derived from a large ensemble of future climates generated from two RCPs that represent higher and lower emissions trajectories (i.e., RCP8.5 and RCP4.5). These are used to develop a Combined Drought Risk Matrix (CDRM) that characterizes drought risks for different water uses as the products of both physical likelihood (from the climate ensemble) and risk perception (from the interviews). We use the CRDM to explore the avoided drought risks posed to various water uses, as well as to investigate the potential for reduction of conflict over water management.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2014
- Bibcode:
- 2014AGUFMGC41B0536T
- Keywords:
-
- 0850 Geoscience education research;
- 1616 Climate variability;
- 4332 Disaster resilience;
- 4353 Sociology of disasters