Quantifying Livestock Heat Stress Impacts in the Sahel
Abstract
Livestock heat stress, especially in regions of the developing world with limited adaptive capacity, has a largely unquantified impact on food supply. Though dominated by ambient air temperature, relative humidity, wind speed, and solar radiation all affect heat stress, which can decrease livestock growth, milk production, reproduction rates, and mortality. Indices like the thermal-humidity index (THI) are used to quantify the heat stress experienced from climate variables. Livestock experience differing impacts at different index critical thresholds that are empirically determined and specific to species and breed. This lack of understanding has been highlighted in several studies with a limited knowledge of the critical thresholds of heat stress in native livestock breeds, as well as the current and future impact of heat stress,. As adaptation and mitigation strategies to climate change depend on a solid quantitative foundation, this knowledge gap has limited such efforts. To address the lack of study, we have investigated heat stress impacts in the pastoral system of Sub-Saharan West Africa. We used a stochastic weather generator to quantify both the historic and future variability of heat stress. This approach models temperature, relative humidity, and precipitation, the climate variables controlling heat stress. Incorporating large-scale climate as covariates into this framework provides a better historical fit and allows us to include future CMIP5 GCM projections to examine the climate change impacts on heat stress. Health and production data allow us to examine the influence of this variability on livestock directly, and are considered in conjunction with the confounding impacts of fodder and water access. This understanding provides useful information to decision makers looking to mitigate the impacts of climate change and can provide useful seasonal forecasts of heat stress risk. A comparison of the current and future heat stress conditions based on climate variables for West Africa will be presented, An assessment of current and future risk was obtained by linking climatic heat stress to cattle health and production. Seasonal forecasts of heat stress are also provided by modeling the heat stress climate variables using persistent large-scale climate features.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2014
- Bibcode:
- 2014AGUFMGC23A0614B
- Keywords:
-
- 0402 Agricultural systems;
- 1605 Abrupt/rapid climate change;
- 4313 Extreme events;
- 4327 Resilience