Three-Dimensional Simulation of Avalanche-Generated Impulse Waves and Evaluation of Lake-Lowering Scenarios at Lake Palcacocha, Peru
Abstract
Accelerated retreat of Andean glaciers in recent decades due to a warming climate has caused the emergence and growth of glacial lakes. As these lakes continue to grow, they pose an increasing risk of glacial lake outburst floods (GLOFs). GLOFs can be triggered by moraine failures or by avalanches, rockslides, or ice calving into glacial lakes. For many decades Lake Palcacocha in the Cordillera Blanca, Peru has threatened citizens living in the city of Huaraz which was devastated by a GLOF in 1941. A safety system for Lake Palcacocha was put in place in the 1970's to control the lake level, but the lake has since grown to the point where it is once again dangerous. Overhanging ice from the glaciers above and a relatively low freeboard make the lake vulnerable to avalanches and landslides. Lake Palcacocha is used as a case study to investigate the impact of an avalanche event on the lake dynamics. Three-dimensional lake modeling in the context of glacial hazards is not common, but 3D simulations can enhance our understanding of avalanche-generated impulse waves and their downstream impacts. In this work, a 3D hydrodynamic model is used to simulate the generation of an impulse wave from an avalanche falling into the lake, wave propagation, and overtopping of the terminal moraine. These results are used as inputs to a downstream model to predict the impact from a GLOF. As lowering the level of the lake is the most likely mitigation alternative, several scenarios are considered to evaluate the impact from avalanche events with a reduction in the lake level. The results of this work can be used to evaluate the effectiveness of the current lake management system and potential lake-lowering alternatives. Use of a robust 3D lake model enables more accurate predictions of peak flows during GLOF events and the time scales of these events so that mitigation strategies can be developed that reduce the risk to communities living downstream of hazardous lakes.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2014
- Bibcode:
- 2014AGUFMGC13E0697C
- Keywords:
-
- 1622 Earth system modeling;
- 1640 Remote sensing;
- 1847 Modeling;
- 1880 Water management