Physically-based modeling of drag force caused by natural woody vegetation
Abstract
Riparian areas and floodplains are characterized by woody vegetation, which is an essential feature to be accounted for in many hydro-environmental models. For applications including flood protection, river restoration and modelling of sediment processes, there is a need to improve the reliability of flow resistance estimates. Conventional methods such as the use of lumped resistance coefficients or simplistic cylinder-based drag force equations can result in significant errors, as these methods do not adequately address the effect of foliage and reconfiguration of flexible plant parts under flow action. To tackle the problem, physically-based methods relying on objective and measurable vegetation properties are advantageous for describing complex vegetation. We have conducted flume and towing tank investigations with living and artificial plants, both in arrays and with isolated plants, providing new insight into advanced parameterization of natural vegetation. The stem, leaf and total areas of the trees confirmed to be suitable characteristic dimensions for estimating flow resistance. Consequently, we propose the use of leaf area index and leaf-to-stem-area ratio to achieve better drag force estimates. Novel remote sensing techniques including laser scanning have become available for effective collection of the required data. The benefits of the proposed parameterization have been clearly demonstrated in our newest experimental studies, but it remains to be investigated to what extent the parameter values are species-specific and how they depend on local habitat conditions. The purpose of this contribution is to summarize developments in the estimation of vegetative drag force based on physically-based approaches as the latest research results are somewhat dispersed. In particular, concerning woody vegetation we seek to discuss three issues: 1) parameterization of reconfiguration with the Vogel exponent; 2) advantage of parameterizing plants with the leaf area index and leaf-to-stem-area ratio, and 3) effect of plant scale (size from twigs to mature trees). To analyze these issues we use experimental data from the authors' research teams as well as from other researchers. The results are expected to be useful for the design of future experimental campaigns and developing drag force models.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2014
- Bibcode:
- 2014AGUFMEP53D3687J
- Keywords:
-
- 0476 Plant ecology;
- 0483 Riparian systems;
- 1825 Geomorphology: fluvial;
- 1862 Sediment transport