Global Analysis of River Planform Change using the Google Earth Engine
Abstract
Geomorphologists have historically tracked river dynamics using a combination of maps, aerial photographs, and the stratigraphic record. Although stratigraphic records can extend into deep time, maps and aerial photographs often confine our record of change to sparse measurements over the last ~80 years and in some cases much less time. For the first time Google's Earth Engine (GEE) cloud based platform allows researchers the means to analyze quantitatively the pattern and pace of river channel change over the last 30 years with high temporal resolution across the entire planet. The GEE provides an application programing interface (API) that enables quantitative analysis of various data sets including the entire Landsat L1T archive. This allows change detection for channels wider than about 150 m over 30 years of successive, georeferenced imagery. Qualitatively, it becomes immediately evident that the pace of channel morphodynamics for similar planforms varies by orders of magnitude across the planet and downstream along individual rivers. To quantify these rates of change and to explore their controls we have developed methods for differentiating channels from floodplain along large alluvial rivers. We introduce a new metric of morphodynamics: the ratio of eroded area to channel area per unit time, referred to as "M". We also keep track of depositional areas resulting from channel shifting. To date our quantitative analysis has focused on rivers in the Andean foreland. Our analysis shows channel bank erosion rates, M, varies by orders of magnitude for these rivers, from 0 to ~0.25 yr-1, yet these rivers have essentially identical curvature and sinuosity and are visually indistinguishable. By tracking both bank paths in time, we find that, for some meandering rivers, a significant fraction of new floodplain is produced through outer-bank accretion rather than point bar deposition. This process is perhaps more important in generating floodplain stratigraphy than previously recognized. These initial findings indicate a new set of quantitative observations will emerge to further test and advance morphodynamic theory. The Google Earth Engine offers the opportunity to explore river morphodynamics on an unprecedented scale and provides a powerful tool for addressing fundamental questions in river morphodynamics.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2014
- Bibcode:
- 2014AGUFMEP51C3544B
- Keywords:
-
- 1824 Geomorphology: general;
- HYDROLOGY;
- 1825 Geomorphology: fluvial;
- HYDROLOGY;
- 1856 River channels;
- HYDROLOGY;
- 1862 Sediment transport;
- HYDROLOGY