Experimental and numerical study of turbulent flow associated with interacting barchan dunes
Abstract
Barchan dunes are naturally occurring three-dimensional topographic features that have been observed on the surface of several planets. They occur both in aeolian and in subaqueous environments. Barchans typically form in fields having a broad distribution in dune size and migration rates. This results in variable bedform spacing and eventually dynamic bedform-bedform interactions that involve morphodynamic processes (e.g. collision, merging, splitting). These processes are controlled by complex feedback mechanisms mutually linking three key elements: fluid flow, sediment transport and bed morphology. The aim of this work is to contribute to the understanding of the fluid-flow mechanisms responsible for the formation, migration and interaction of these dunes. To this end, we study the three-dimensional flow generated by the interactions between fixed barchan-dune models arranged in tandem in collision and ejection scenarios via experiments in an optically-accessible flow environment using planar particle-image velocimetry (PIV) measurements of the flow field. These measurements are complemented by targeted large-eddy simulations (LES) meant to provide a three-dimensional view of the flow processes for these fixed dune arrangements.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2014
- Bibcode:
- 2014AGUFMEP43C3581B
- Keywords:
-
- 1824 Geomorphology: general;
- HYDROLOGY;
- 1825 Geomorphology: fluvial;
- HYDROLOGY;
- 1830 Groundwater/surface water interaction;
- HYDROLOGY;
- 1862 Sediment transport;
- HYDROLOGY