Watershed Modeling Applications with the Open-Access Modular Distributed Watershed Educational Toolbox (MOD-WET) and Introductory Hydrology Textbook
Abstract
Traditionally, introductory hydrology courses focus on hydrologic processes as independent or semi-independent concepts that are ultimately integrated into a watershed model near the end of the term. When an "off-the-shelf" watershed model is introduced in the curriculum, this approach can result in a potential disconnect between process-based hydrology and the inherent interconnectivity of processes within the water cycle. In order to curb this and reduce the learning curve associated with applying hydrologic concepts to complex real-world problems, we developed the open-access Modular Distributed Watershed Educational Toolbox (MOD-WET). The user-friendly, MATLAB-based toolbox contains the same physical equations for hydrological processes (i.e. precipitation, snow, radiation, evaporation, unsaturated flow, infiltration, groundwater, and runoff) that are presented in the companion e-textbook (http://aqua.seas.ucla.edu/margulis_intro_to_hydro_textbook.html) and taught in the classroom. The modular toolbox functions can be used by students to study individual hydrologic processes. These functions are integrated together to form a simple spatially-distributed watershed model, which reinforces a holistic understanding of how hydrologic processes are interconnected and modeled. Therefore when watershed modeling is introduced, students are already familiar with the fundamental building blocks that have been unified in the MOD-WET model. Extensive effort has been placed on the development of a highly modular and well-documented code that can be run on a personal computer within the commonly-used MATLAB environment. MOD-WET was designed to: 1) increase the qualitative and quantitative understanding of hydrological processes at the basin-scale and demonstrate how they vary with watershed properties, 2) emphasize applications of hydrologic concepts rather than computer programming, 3) elucidate the underlying physical processes that can often be obscured with a complicated "off-the-shelf" watershed model in an introductory hydrology course, and 4) reduce the learning curve associated with analyzing meaningful real-world problems. The open-access MOD-WET and e-textbook have already been successfully incorporated within our undergraduate curriculum.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2014
- Bibcode:
- 2014AGUFMED54A3499H
- Keywords:
-
- 0820 Curriculum and laboratory design;
- 0840 Evaluation and assessment;
- 0850 Geoscience education research;
- 1833 Hydroclimatology