New Perspectives on Ophiolite Formation: Evidence from Ultrahigh Pressure (UHP), Highly Reduced and Crustal-type Minerals in Podiform Chromitites
Abstract
Separated and in situ ultrahigh pressure (UHP), highly reduced and crustal-type minerals are common in podiform chromitites of the Luobusa and Dongqiao ophiolites, Tibet and the Ray-Iz ophiolite of the Polar Urals, Russia. Highly reduced and crustal-type minerals have also been recovered from the Oman ophiolite. UHP minerals include diamond, coesite-stishovite and kyanite, whereas highly reduced minerals are mainly moissanite (SiC), native elements (e.g., Si, Fe, Cr, Al, Ti, Mn, W, Ta) and a wide variety of metallic alloys. Crustal-type minerals are represented by various combinations of zircon, corundum, almandine garnet, kyanite, andalusite, quartz, K-feldspar, plagioclase, apatite, amphibole, rutile, and titanite. Most in-situ grains are hosted in small, circular to irregular patches of amorphous carbon within grains of magnesiochromite, indicating the former presence of a C-rich fluid, either during or after crystallization of the chromite. The recovered zircons are typically rounded to sub-rounded grains with complex internal structures indicating polyphase growth. Their trace element contents and low-pressure inclusion assemblages (quartz, muscovite, K-feldspar, apatite, ilmenite, rutile) indicate a continental crustal origin. The zircons have SIMS U-Pb ages that are generally much older than the host ophiolite (total range: 90 to 2500 Ma). The presence of numerous crustal minerals, particularly zircon, suggests derivation from metasedimentary rocks subducted into the mantle. The preservation of UHP, highly reduced and crustal-type minerals in chromitites implies effective isolation from the mafic melts that formed the ophiolites and chromitites. Clearly, the formation of ophiolites and podiform chromitites must be a complex, multistage process involving crystallization of magnesiochromite grains at depth in the upper mantle, upwelling of the host peridotites and chromitites, capture of mantle wedges above suprasubduction zones, further crystallization and modification of magnesiochromite grains, allowing incorporation of crustal-type minerals from the underlying subducting slab. Slab rollback and/or slab tear may facilitate uprise of mantle peridotites leading to concentration of podiform chromitites within individual ophiolitic blocks.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2014
- Bibcode:
- 2014AGUFM.V53C4884R
- Keywords:
-
- 3035 Midocean ridge processes;
- MARINE GEOLOGY AND GEOPHYSICS;
- 3040 Plate tectonics;
- MARINE GEOLOGY AND GEOPHYSICS;
- 3042 Ophiolites;
- MARINE GEOLOGY AND GEOPHYSICS;
- 8178 Tectonics and magmatism;
- TECTONOPHYSICS