Detection of Organic Matter in Sediments with Near-Infrared Reflectance Spectroscopy: Effects of Mineralogy, Albedo and Hydration
Abstract
Laboratory, field-, and satellite-based visible-near infrared reflectance spectroscopy allows for rapid, remote, and non-destructive analysis of geologic materials to identify mineralogy as well as organic compounds. This type of analysis has potential to aid the search for organics on Mars as a means of first detection of reduced carbon, or to study organic matter nondestructively in valuable samples such as meteorites. In order to assess potential applications of this method we aim to answer fundamental questions about detection limits and quantification of organic matter using reflectance spectroscopy. Laboratory mixtures and natural samples are measured for total organic carbon (TOC in wt.%) with standard methods and reflectance spectroscopy. Absorption features due to C-H2 and C-H3 bonds are observed in the 3.3 to 3.5μm (3000 to 2850 cm-1) wavelength region. A strong H2O feature near 3μm, as well as carbonate-related absorptions near 3.4µm, are also found in this spectral region and can complicate detection of organic material, particularly at low TOC values. In natural samples without carbonate there appears to be a linear trend between TOC and the band depth of organic absorptions; samples that have low albedo, or strong 3μm water features deviate from this trend line. Spectra of samples with carbonate may be modeled with Gaussians to remove the influence of the carbonate features and better match the organic absorption trend. Early results indicate that quantification of organic matter in natural fine-grained samples using reflectance spectroscopy will need to take low-albedo components and water content into account. Detection limits may also depend on these properties; organic absorption features are clearly seen in the lowest TOC sample measured so far (0.08wt% or 800ppm), which is a relatively bright, carbonate-free, quartz- and clay-dominated outcrop sample. A series of laboratory experiments have been undertaken in which known amounts of organic compounds are mixed with smectitic clay in order to understand detection limits and the effects of albedo and hydration in a controlled setting. These laboratory results are compared with findings from natural samples that represent a wide range of ages and depositional settings.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2014
- Bibcode:
- 2014AGUFM.P21D3952K
- Keywords:
-
- 0406 Astrobiology and extraterrestrial materials;
- 1041 Stable isotope geochemistry;
- 1055 Organic and biogenic geochemistry;
- 5225 Early environment of Earth