Analytical arrival and persistence time distributions for flow thresholds in seasonally dry climates
Abstract
Seasonally dry ecosystems, which include Mediterranean, tropical monsoonal and tropical savannah climates, cover approximately 30% of the planet's land area and are globally significant biodiversity hotspots. Due to a highly variable climate, the streamflow available for ecosystems and ecosystems services in these regions is typified by large inter-annual variability. Methods to quantify this variability could shed light on stream ecosystem stress, particularly new stresses imposed by human activity or climate change. This study develops a probabilistic framework to examine controls on dry season flow characteristics in seasonally dry climates. Assuming a typical recession pattern, which is conditioned on an initial value that is sampled from the wet season flows [1,2], analytical PDFs for the arrival time of a given dry season flow threshold can be obtained. Below-flow-threshold persistence time distributions are computed as the difference between an (assumed) normally distributed dry season length and the mean flow threshold arrival time. A number of hypotheses are proposed to explain unexpected sources of variability in the empirical arrival time distributions. The ecologic implications of extended low flow persistence, such as the hydrologic fragmentation of lower order watersheds, are discussed. [1] Müller, M. F., D. N. Dralle, and S. E. Thompson (2014), Analytical model for flow duration curves in seasonally dry climates, Water Resour. Res., 50, doi:10.1002/2014WR015301 [2] Botter, G., A. Porporato, I. Rodriguez-Iturbe, and A. Rinaldo (2007), Basin-scale soil moisture dynamics and the probabilistic characterization of carrier hydrologic flows: Slow, leaching-prone components of the hydrologic response, Water Resour. Res., 43, W02417, doi:10.1029/2006WR005043
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2014
- Bibcode:
- 2014AGUFM.H31G0686D
- Keywords:
-
- 1813 Eco-hydrology;
- HYDROLOGY;
- 1878 Water/energy interactions;
- HYDROLOGY;
- 1894 Instruments and techniques: modeling;
- HYDROLOGY;
- 1895 Instruments and techniques: monitoring;
- HYDROLOGY