Diurnal temperature effect on nitrate removal and production efficiency in bedform-induced hyporheic zones
Abstract
Rivers and aquifers are connected through the hyporheic zone (HZ). Pore water in the subsurface sediments is continuously exchanged with the overlying surface water. The exchange of water, mass and energy occurring along the surface-subsurface interface or within the HZ exerts a strong influence on the quality of both surface and subsurface waters, and fluvial ecology. Moreover, the HZ is rich in biologically active sediment, creating a favorable condition for microbially-facilitated reactions to occur, including organic carbon oxidation (aerobic respiration), nitrification, and denitrification. Inorganic N, especially NO3-, is of concern as a drinking water pollutant and as a cause for eutrophication that threatens ecosystems. The biogeochemical reactions in the HZ could produce or consume NO3- and thus the HZ could serve a nitrate source or sink role in the fluvial system. In addition, hyporheic exchange across the sediment-water interface (SWI) leads to penetration of diel temperature cycles from the river, leading to dynamic HZ temperature pattern. This in turn affects biogeochemical reactions in the HZ. The main objective of this study is to integrate all the processes that occur along the SWI to understand how diurnal temperature variations affect the biogeochemical function of the HZ. We conducted numerical simulations of coupled turbulent open-channel fluid flow, porous fluid flow, porous heat transport and reactive solute transport to study feedbacks and coupling between these processes. We assumed sinusoidally varying diurnal temperature variations. We studied the effects of different mean temperatures and different amplitudes of the diurnal temperature variations on nitrate removal or production efficiency in the HZ. The simulation results show that the average temperature effect on the HZ nitrate source-sink functionality and its associated efficiency has strong dependence on the [NO3-]/[NH4+ ] ratio in the river. However, the effects of the amplitude of temperature variations on over-all nitrate removal and production efficiency is very small.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2014
- Bibcode:
- 2014AGUFM.H31B0615Z
- Keywords:
-
- 1830 Groundwater/surface water interaction;
- HYDROLOGY;
- 1831 Groundwater quality;
- HYDROLOGY;
- 1836 Hydrological cycles and budgets;
- HYDROLOGY;
- 1871 Surface water quality;
- HYDROLOGY