Energy Balance Alterations Due to Cropland Conversion in a Tropical Montane Environment: Shaded Coffee to Sugarcane
Abstract
Although land use change (LUC) is an important driver of changes in climate, very limited field observations of atmosphere-landscape interactions exist in tropical montane zones to examine the extent to which LUCs affect climate locally and regionally. The lack of ground observations hampers the evaluation of satellite-derived datasets of land surface parameters as well as the validation of regional climate models. The first results of an ongoing study of the climate effects of a LUC trajectory in the lower montane region (1200 m a.s.l.) of central Veracruz, Mexico, are presented. The radiation balance, turbulent fluxes and soil heat flux were measured in order to obtain field-derived land surface parameters (albedo and Bowen ratio) of two contrasting land uses: shaded coffee (CO) and sugarcane (SU) plantations. Measurements were conducted on days representing different seasons and crop stages during 2014: cold-dry (January), warm-dry (March) and warm-wet (July). Average noon-time albedo was higher for SU than for CO (0.14 vs. 0.11). Soil heat flux was on average 13% and 12% of net radiation for SU and CO, respectively. Preliminary turbulent flux calculations indicate that noon-time Bowen ratio was higher for sugar cane (range: 1.0-1.5) compared to shaded coffee (range: 0.5-1.0). Seasonal (and crop-stage) changes affected the surface parameters of SU mostly. For example, the SU Bowen ratio increased with decreasing soil moisture, indicating soil moisture limitation for transpiration reducing latent heat flux. In contrast, the shaded coffee Bowen ratio remained relatively constant across measuring periods. The energy balance closure was 80% (pending complete eddy covariance data corrections). These results indicate that the conversion of shaded coffee to sugarcane result in a drier and hotter lower atmosphere. Next steps include examining the implications of these local changes for regional climate, with special attention to cloud formation, using a regional model validated with measured average cloud base height (ceilometer data) and boundary layer dynamics (balloon soundings).
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2014
- Bibcode:
- 2014AGUFM.H21F0786A
- Keywords:
-
- 1803 Anthropogenic effects;
- HYDROLOGY;
- 1813 Eco-hydrology;
- HYDROLOGY;
- 1876 Water budgets;
- HYDROLOGY;
- 1879 Watershed;
- HYDROLOGY