Interpreting Gas Production Decline Curves By Combining Geometry and Topology
Abstract
Shale gas production forms an increasing fraction of domestic US energy supplies, but individual gas production wells show steep production declines. Better understanding of this production decline would allow better economic forecasting; better understanding of the reasons behind the decline would allow better production management. Yet despite these incentives, production declines curves remain poorly understood, and current analyses range from Arps' purely empirical equation to new sophisticated approaches requiring multiple unavailable parameters. Models often fail to capture salient features: for example, in log-log space many wells decline with an exponent markedly different from the -0.5 expected from diffusion, and often show a transition from one decline mode to another. We propose a new approach based on the assumption that the rate-limiting step is gas movement from the matrix to the induced fracture network. The matrix is represented as an assemblage of equivalent spheres (geometry), with low matrix pore connectivity (topology) that results in a distance-dependent accessible porosity profile given by percolation theory. The basic theory has just 2 parameters: the sphere size distribution (geometry), and the crossover distance (topology) that characterizes the porosity distribution. The theory is readily extended to include e.g. alternative geometries and bi-modal size distributions. Comparisons with historical data are promising.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2014
- Bibcode:
- 2014AGUFM.H11H0989E
- Keywords:
-
- 1822 Geomechanics;
- HYDROLOGY;
- 3902 Creep and deformation;
- MINERAL PHYSICS;
- 5104 Fracture and flow;
- PHYSICAL PROPERTIES OF ROCKS;
- 5114 Permeability and porosity;
- PHYSICAL PROPERTIES OF ROCKS