Imaging, Mapping and Monitoring Environmental Radionuclide Transport Using Compton-Geometry Gamma Camera
Abstract
The legacy to-date of the nuclear disaster at Fukushima Dai-ichi, Japan, has emphasised the fundamental importance of high quality radiation measurements in soils and plant systems. Current-generation radiometers based on coded-aperture collimation are limited in their ability to locate sources of radiation in three dimensions, and require a relatively long measurement time due to the poor efficiency of the collimation system. The quality of data they can provide to support biogeochemical process models in such systems is therefore often compromised. In this work we report proof-of-concept experiments demonstrating the potential of an alternative approach in the measurement of environmentally-important radionuclides (in particular 137Cs) in quartz sand and soils from the Fukushima exclusion zone. Compton-geometry imaging radiometers harness the scattering of incident radiation between two detectors to yield significant improvements in detection efficiency, energy resolution and spatial location of radioactive sources in a 180° field of view. To our knowledge we are reporting its first application to environmentally-relevant systems at low activity, dispersed sources, with significant background radiation and, crucially, movement over time. We are using a simple laboratory column setup to conduct one-dimensional transport experiments for 139Ce and 137Cs in quartz sand and in homogenized repacked Fukushima soils. Polypropylene columns 15 cm length with internal diameter 1.6 cm were filled with sand or soil and saturated slowly with tracer-free aqueous solutions. Radionuclides were introduced as 2mL pulses (step-up step-down) at the column inlet. Data were collected continuously throughout the transport experiment and then binned into sequential time intervals to resolve the total activity in the column and its progressive movement through the sand/soil. The objective of this proof-of-concept work is to establish detection limits, optimise image reconstruction algorithms, and develop a novel approach to time-lapse quantification of radionuclide dynamics in the soil-plant system. The aim is to underpin the development of a new generation of Compton radiometers equipped to provide high resolution, dynamic measurements of radionuclides in terrestrial biogeochemical environments.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2014
- Bibcode:
- 2014AGUFM.B21C0054B
- Keywords:
-
- 0426 Biosphere/atmosphere interactions;
- 0430 Computational methods and data processing;
- 0452 Instruments and techniques;
- 0480 Remote sensing