Characteristics of environmental correlations between iron (oxyhydr)oxide nanoparticles and microbial activity
Abstract
Nanoparticulate iron oxides and oxyhydroxides with large surface area and high chemical reactivity cause the immobilization of heavy metals and the provision of essential nutrients to organisms. Environmental correlations between microbial activity and nanomorphology of iron (oxyhydr)oxides are significantly important for earth surface processes. In this study, we characterize iron (oxyhydr)oxide nanoparticles and microorganisms in natural lake sediments and describe their association observed between particle nanostructures and microbial species. About 40 cm depth of boring core sample was collected from Lake Kasumigaura, Lake Ushiku, Kokai River and Lake Tega, Japan. To distinguish both iron nanoparticles and growing bacterial colonies with depths, boring core samples were divided into three to five pieces. Particle morphologies, size, aggregation states, mineral species, and microorganisms were observed by transmission electron microscopy (TEM), X-ray diffraction (XRD), and rRNA gene sequences. Redox potential and pH of the lake sediments were also measured. The core sample from top is mainly composed of quartz of coarse-grained materials, while that from bottom is of ferrihydrite of fine grained materials. The authors will show the results of experiments and discuss the interrelation between iron nanoparticles and microorganisms.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2014
- Bibcode:
- 2014AGUFM.B13N0078T
- Keywords:
-
- 0414 Biogeochemical cycles;
- processes;
- and modeling;
- 0428 Carbon cycling;
- 0486 Soils/pedology;
- 1615 Biogeochemical cycles;
- processes;
- and modeling