Aerosol/cloud Base Droplet Size Distribution Characteristics and the Onset of Coalescence in Shallow and Deep Convective Clouds
Abstract
It is clear that aerosols contribute to the observed differences in cloud droplet size distributions between maritime and continental and between non-polluted and polluted convection. In addition, other factors such as cloud base temperature, boundary layer depth, thermodynamic profile (updraft speeds) that vary between land and ocean regions, could also be contributing to the observed differences or acting in concert with aerosol effects. In addition, the initial cloud droplet spectra at cloud base to a large extent determines the microphysical processes of precipitation formation (water and ice) at higher levels in the clouds and thus the vertical transport of aerosols and gases in deep convective clouds. During the 2013 NASA SEAC4RS field campaign we have collected a large amount of microphysical data in both shallow and deep convective clouds. This data will be compared to data from other field campaigns to detect specific characteristics of the cloud base droplet size distribution and relate it to onset and evolution of the coalescence process in clouds. The presentation will provide a survey of the cloud droplet size distributions at cloud base in both shallow and deep convective clouds and will relate them to environmental parameters to better understand aerosol-cloud interactions and the other parameters that play a role in the onset of coalescence in convective clouds. We will relate the airborne aerosol variations (size and concentration in different environments) to the cloud droplet size distribution. Model simulations using a detailed coalescence model will be used to obtain a better understanding of the onset of the coalescence process.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2014
- Bibcode:
- 2014AGUFM.A53D3246B
- Keywords:
-
- 0320 Cloud physics and chemistry;
- 3310 Clouds and cloud feedbacks;
- 3314 Convective processes;
- 3371 Tropical convection