Impacts of oxidation aging on secondary organic aerosol formation, particle growth rate, cloud condensation nuclei abundance, and aerosol climate forcing
Abstract
Particle composition measurements indicate that organic aerosol (OA) makes up ~20-90% of submicron particulate mass and secondary OA (SOA) accounts for a large fraction (~ 72 ±21%) of these OA masses at many locations around the globe. The volatility changes of secondary organic gases (SOG) associated with oxidation aging as well as the contribution of highly oxidized low volatile SOG (LV-SOG) to the condensational growth of secondary particles have been found to be important in laboratory and field measurements but are poorly represented in global models. A novel scheme to extend the widely used two-product SOA formation model, by adding a third product arising from the oxidation aging (i.e., LV-SOG) and considering the dynamic transfer of mass from higher to lower volatile products, has been developed and implemented into a global chemical transport model (GEOS-Chem) and a community atmosphere model (CESM-CAM5). The scheme requires only minor changes to the existing two-product SOA formation model and is computationally efficient. With the oxidation rate constrained by laboratory measurements, we show that the new scheme predicts a much higher SOA mass concentrations, improving the agreement with aerosol mass spectrometer SOA measurements. The kinetic condensation of LV-SOG on ultrafine particles, simulated by a size-resolved (sectional) advanced particle microphysics (APM) model incorporated into in GEOS-Chem and CAM5, increases the particle growth rate substantially and improves the agreement of simulated cloud condensation nuclei (CCN) concentrations with observations. Based on GEOS-Chem-APM simulations, the new SOA formation scheme increases global mean low troposphere SOA mass concentration by ~130% and CCN abundance by ~ 15%, and optical depth of secondary particles and coated black carbon and primary organic carbon particles by ~10%. As a result, aerosol radiative cooling effect (direct + first indirect) is enhanced by -0.9 W/m2, with large spatial variations. CAM5-APM simulations show similar magnitude of impacts. The implication of oxidation aging to net direct and indirect radiative forcing of anthropogenic aerosols based on both GEOS-Chem-APM and CAM5-APM will be discussed.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2014
- Bibcode:
- 2014AGUFM.A21K3183Y
- Keywords:
-
- 0305 Aerosols and particles;
- 0345 Pollution: urban and regional;
- 0365 Troposphere: composition and chemistry;
- 0368 Troposphere: constituent transport and chemistry