Variability of O3 and NO2 Profile Shapes during DISCOVER-AQ July 2011
Abstract
The first deployment of the NASA Earth Venture -1 DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) project was conducted during July 2011 in the Baltimore-Washington region. The P-3B aircraft provided in situ vertical profiles of meteorological quantities, trace gases, and aerosols over six Maryland Department of the Environment (MDE) air quality monitoring sites over fourteen flight days. Additionally, two sites launched ozonesondes and operated tethersondes during the campaign, supplementing the P-3B profiles. A major goal of DISCOVER-AQ is to understand the processes linking column abundances to surface concentrations for O3 and NO2, which includes understanding the variability of the in situ O3 and NO2 profile shapes used to compute the lower tropospheric column abundances. In support of this goal, a hierarchical cluster analysis was performed for the O3 and NO2 P-3B and sonde profiles for the Maryland 2011 campaign, allowing classes of profile shapes to be identified at each surface site. These classes were related to differences in vertical mixing, as indicated by profiles of potential temperature, CO, and short-lived trace gas species, as well as the impact of the bay breeze at one site. Such an analysis of profile variability will also be useful to assess the representativeness of the assumed profile shapes used in satellite retrievals for O3 and NO2. Further, profile shapes for these species were compared with those from the CMAQ model to assess its performance. Lastly, the average diurnal variation of the O3 and NO2 column abundances over the July 2011 campaign was assessed at each site to elucidate the diurnal cycle for these columns and results were compared to the once-per-day OMI column observations.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2014
- Bibcode:
- 2014AGUFM.A11H3093F
- Keywords:
-
- 0345 Pollution: urban and regional;
- 0368 Troposphere: constituent transport and chemistry;
- 3307 Boundary layer processes;
- 3355 Regional modeling