On some determinants with Legendre symbol entries
Abstract
In this paper we mainly focus on some determinants with Legendre symbol entries. Let $p$ be an odd prime and let $(\frac{\cdot}p)$ be the Legendre symbol. We show that $(\frac{-S(d,p)}p)=1$ for any $d\in\mathbb Z$ with $(\frac dp)=1$, and that $$\left(\frac{W_p}p\right)=\begin{cases}(-1)^{|\{0<k<\frac p4:\ (\frac kp)=-1\}|}&\text{if}\ p\equiv1\pmod4, \\(-1)^{\lfloor(p+1)/8\rfloor}&\text{if}\ p\equiv3\pmod4,\end{cases}$$ where $$S(d,p)=\det\left[\left(\frac{i^2+dj^2}p\right)\right]_{1\le i,j\le(p-1)/2}$$ and $$W_p=\det\left[\left(\frac{i^2-((p-1)/2)!j}p\right)\right]_{0\le i,j\le(p-1)/2}.$$ We also pose some conjectures on determinants, one of which states that $(-1)^{\lfloor(p+1)/8\rfloor}W_p$ is a square when $p\equiv 3\pmod4$.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2013
- arXiv:
- arXiv:1308.2900
- Bibcode:
- 2013arXiv1308.2900S
- Keywords:
-
- Mathematics - Number Theory;
- 11C20;
- 15A15;
- 11A07;
- 11R11
- E-Print:
- 22 pages, final published version