Separation coordinates, moduli spaces and Stasheff polytopes
Abstract
We show that the orthogonal separation coordinates on the sphere $S^n$ are naturally parametrised by the real version of the Deligne-Mumford-Knudsen moduli space $\bar M_{0,n+2}(R)$ of stable curves of genus zero with $n+2$ marked points. We use the combinatorics of Stasheff polytopes tessellating $\bar M_{0,n+2}(R)$ to classify the different canonical forms of separation coordinates and deduce an explicit construction of separation coordinates and Stäckel systems from the mosaic operad structure on $\bar M_{0,n+2}(R)$.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2013
- DOI:
- 10.48550/arXiv.1307.6132
- arXiv:
- arXiv:1307.6132
- Bibcode:
- 2013arXiv1307.6132S
- Keywords:
-
- Mathematics - Differential Geometry;
- Mathematical Physics;
- 53A60;
- 14H10
- E-Print:
- Extended version, 20 pages, 4 figures