Etude de l'influence du champ magnetique dans une section d'essais thermohydraulique d'un canal de reacteur nucleaire CANDU 6
Abstract
This memoir deals with the effects of the magnetic fields present in a thermal hydraulic test section of the Canadian nuclear industry. This test section is used to determine the thermal hydraulic conditions that can lead to critical heat flux in a channel of a CANDU 6 nuclear reactor. To perform their series of experiments the STERN Company used strong electric currents to heat the simulation bundles with a thermal power similar to the one found in a channel of a CANDU reactor. The materials constituting the simulation channel and its supports are of ferromagnetic nature. The strong magnetic field generated by the bundles implies that they are subjected to a magnetostatic force due to the magnetization of the ferromagnetic materials. The nuclear industry wants to know if these efforts, combined with the force of gravity, are sufficient to maintain the bundles in place in the simulation channel. The question also arises whether or not the magnetic field present in the channel can affect the parameters of boiling heat transfer. To determine the magnetic field distribution in the simulation channel, we had recourse to the magnetostatic image method and the integral method of calculation of magnetization. The results of the calculations show that the magnetostatic forces exerted by the ferromagnetic elements of the test section are inferior in magnitude to the one estimated by the STERN laboratorie. We used the mechanistic model of Sullivan et al. (1964) to evaluate the possible influence of the magnetic fields on the departure diameter of the vapor bubbles. The deviation in the frequency of bubble emission was evaluated by using the correlations of Zuber et al. (1959) and Cole (1960). By introducing a magnetostatic force in the boiling model and in the correlations, we demonstrated that the magnetic field present in the STERN test section has a negligible effect on the bubble departure diameter and their emission frequency. We conclude that the conditions in the test section are consistent with those prevailing in the channel of a CANDU 6 reactor.
- Publication:
-
Ph.D. Thesis
- Pub Date:
- 2013
- Bibcode:
- 2013PhDT.......313L
- Keywords:
-
- Engineering, Nuclear;Energy;Physics, Electricity and Magnetism