Memristor, Hodgkin-Huxley, and Edge of Chaos
Abstract
From a pedagogical point of view, the memristor is defined in this tutorial as any 2-terminal device obeying a state-dependent Ohm’s law. This tutorial also shows that from an experimental point of view, the memristor can be defined as any 2-terminal device that exhibits the fingerprints of ‘pinched’ hysteresis loops in the v-i plane. It also shows that memristors endowed with a continuum of equilibrium states can be used as non-volatile analog memories. This tutorial shows that memristors span a much broader vista of complex phenomena and potential applications in many fields, including neurobiology. In particular, this tutorial presents toy memristors that can mimic the classic habituation and LTP learning phenomena. It also shows that sodium and potassium ion-channel memristors are the key to generating the action potential in the Hodgkin-Huxley equations, and that they are the key to resolving several unresolved anomalies associated with the Hodgkin-Huxley equations. This tutorial ends with an amazing new result derived from the new principle of local activity, which uncovers a minuscule life-enabling ‘Goldilocks zone’, dubbed the edge of chaos, where complex phenomena, including creativity and intelligence, may emerge. From an information processing perspective, this tutorial shows that synapses are locally-passive memristors, and that neurons are made of locally-active memristors.
- Publication:
-
Nanotechnology
- Pub Date:
- September 2013
- DOI:
- Bibcode:
- 2013Nanot..24L3001C