On the role of the Γ - λEdd relation on the X-ray Baldwin effect in active galactic nuclei
Abstract
The X-ray Baldwin effect is the inverse correlation between the equivalent width (EW) of the narrow component of the iron Kα line and the X-ray luminosity of active galactic nuclei (AGN). A similar trend has also been observed between Fe Kα EW and the Eddington ratio (λEdd). Using Chandra/High Energy Grating results of Shu et al. and bolometric corrections we study the relation between EW and λEdd, and find that log EW = ( - 0.13 ± 0.03)log λEdd + 1.47. We explore the role of the known positive correlation between the photon index of the primary X-ray continuum Γ and λEdd on the X-ray Baldwin effect. We simulate the iron Kα line emitted by populations of unabsorbed AGN considering three different geometries of the reflecting material: toroidal, spherical-toroidal and slab. We find that the Γ-λEdd correlation cannot account for the whole X-ray Baldwin effect, unless a strong dependence of Γ on λEdd, such as the one recently found by Risaliti et al. and Jin et al., is assumed. No clear correlation is found between EW and Γ. We conclude that a good understanding of the slope of the Γ-λEdd relation is critical to assess whether the trend plays a leading or rather a marginal role in the X-ray Baldwin effect.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- November 2013
- DOI:
- 10.1093/mnras/stt1326
- arXiv:
- arXiv:1307.4507
- Bibcode:
- 2013MNRAS.435.1840R
- Keywords:
-
- galaxies: active;
- galaxies: nuclei;
- quasars: emission lines;
- quasars: general;
- galaxies: Seyfert;
- X-rays: galaxies;
- Astrophysics - High Energy Astrophysical Phenomena;
- Astrophysics - Cosmology and Nongalactic Astrophysics
- E-Print:
- 12 pages, 7 figures, MNRAS in press, final version