First human Cerenkography
Abstract
Cerenkov luminescence imaging is an emerging optical preclinical modality based on the detection of Cerenkov radiation induced by beta particles when traveling though biological tissues with a velocity greater than the speed of light. We present the first human Cerenkography obtained by detecting Cerenkov radiation escaping the thyroid gland of a patient treated for hyperthyroidism. The Cerenkov light was detected using an electron multiplied charge coupled device and a conventional C-mount lens. The system set-up has been tested by using a slab of ex vivo tissue equal to a 1 cm slice of chicken breast in order to simulate optical photons attenuation. We then imaged for 2 min the head and neck region of a patient treated orally 24 h before with 550 MBq of I-131. Co-registration between photographic and Cerenkov images showed a good localization of the Cerenkov light within the thyroid region. In conclusion, we showed that it is possible to obtain a planar image of Cerenkov photons escaping from a human tissue. Cerenkography is a potential novel medical tool to image superficial organs of patients treated with beta minus radiopharmaceuticals and can be extended to the imaging of beta plus emitters.
- Publication:
-
Journal of Biomedical Optics
- Pub Date:
- February 2013
- DOI:
- Bibcode:
- 2013JBO....18b0502S