Influence of departures from LTE on oxygen abundance determination in the atmospheres of A-K stars
Abstract
We have performed non-LTE calculations for O I with a multilevel model atom using currently available atomic data for a set of parameters corresponding to stars of spectral types from A to K. Departures from LTE lead to a strengthening of O I lines, and the difference between the non-LTE and LTE abundances (non-LTE correction) is negative. The non-LTE correction does not exceed 0.05 dex in absolute value for visible O I lines for main-sequence stars in the entire temperature range. For the infrared O I 7771 Å line, the non-LTE correction can reach -1.9 dex. The departures from LTE are enhanced with increasing temperature and decreasing surface gravity. We have derived the oxygen abundance for three A-type mainsequence stars with reliably determined parameters (Vega, Sirius, HD 32115). For each of the stars, allowance for the departures from LTE leads to a decrease in the difference between the abundances from infrared and visible lines, for example, for Vega from 1.17 dex in LTE to 0.14 dex when abandoning LTE. In the case of Procyon and the Sun, inelastic collisions with HI affect the statistical equilibrium of OI, and agreement between the abundances from different lines is achieved when using Drawin's classical formalism. Based on the O I 6300, 6158, 7771-5, and 8446 Å lines of the solar spectrum, we have derived the mean oxygen abundance log ɛ = 8.74 ± 0.05 using a classical plane-parallel model solar atmosphere and log ɛ +3 D = 8.78 ± 0.03 by applying the 3D corrections taken from the literature.
- Publication:
-
Astronomy Letters
- Pub Date:
- February 2013
- DOI:
- Bibcode:
- 2013AstL...39..126S
- Keywords:
-
- stellar atmospheres;
- spectral line formation under nonequilibrium conditions;
- solar and stellar oxygen abundance