The Redshift Distribution of Intervening Weak Mg II Quasar Absorbers and a Curious Dependence on Quasar Luminosity
Abstract
We have identified 469 Mg II λλ2796, 2803 doublet systems having Wr >= 0.02 Å in 252 Keck/High Resolution Echelle Spectrometer and UVES/Very Large Telescope quasar spectra over the redshift range 0.1 < z < 2.6. Using the largest sample yet of 188 weak Mg II systems (0.02 Å <=Wr < 0.3 Å), we calculate their absorber redshift path density, dN/dz. We find clear evidence of evolution, with dN/dz peaking at z ~ 1.2, and that the product of the absorber number density and cross section decreases linearly with increasing redshift; weak Mg II absorbers seem to vanish above z ~= 2.7. If the absorbers are ionized by the UV background, we estimate number densities of 106-109 Mpc-3 for spherical geometries and 102-105 Mpc-3 for more sheetlike geometries. We also find that dN/dz toward intrinsically faint versus bright quasars differs significantly for weak and strong (Wr >= 1.0 Å) absorbers. For weak absorption, dN/dz toward bright quasars is ~25% higher than toward faint quasars (10σ at low redshift, 0.4 <= z <= 1.4, and 4σ at high redshift, 1.4 < z <= 2.34). For strong absorption the trend reverses, with dN/dz toward faint quasars being ~20% higher than toward bright quasars (also 10σ at low redshift and 4σ at high redshift). We explore scenarios in which beam size is proportional to quasar luminosity and varies with absorber and quasar redshifts. These do not explain dN/dz's dependence on quasar luminosity.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- May 2013
- DOI:
- 10.1088/0004-637X/768/1/3
- arXiv:
- arXiv:1303.2111
- Bibcode:
- 2013ApJ...768....3E
- Keywords:
-
- quasars: absorption lines;
- Astrophysics - Cosmology and Nongalactic Astrophysics
- E-Print:
- 7 pages, 4 figures ApJ accepted