Chromospheric Evaporation in an M1.8 Flare Observed by the Extreme-ultraviolet Imaging Spectrometer on Hinode
Abstract
We discuss observations of chromospheric evaporation for a complex flare that occurred on 2012 March 9 near 03:30 UT obtained from the Extreme-ultraviolet Imaging Spectrometer (EIS) on board the Hinode spacecraft. This was a multiple event with a strong energy input that reached the M1.8 class when observed by EIS. EIS was in raster mode and fortunately the slit was almost at the exact location of a significant energy input. Also, EIS obtained a full-CCD spectrum of the flare, i.e., the entire CCD was readout so that data were obtained for about the 500 lines identified in the EIS wavelength ranges. Chromospheric evaporation characterized by 150-200 km s-1 upflows was observed in multiple locations in multi-million degree spectral lines of flare ions such as Fe XXII, Fe XXIII, and Fe XXIV, with simultaneous 20-60 km s-1 upflows in million degree coronal lines from ions such as Fe XII-Fe XVI. The behavior of cooler, transition region ions such as O VI, Fe VIII, He II, and Fe X is more complex, but upflows were also observed in Fe VIII and Fe X lines. At a point close to strong energy input in space and time, the flare ions Fe XXII, Fe XXIII, and Fe XXIV reveal an isothermal source with a temperature close to 14 MK and no strong blueshifted components. At this location there is a strong downflow in cooler active region lines from ions such as Fe XIII and Fe XIV, on the order of 200 km s-1. We speculate that this downflow may be evidence of the downward shock produced by reconnection in the current sheet seen in MHD simulations. A sunquake also occurred near this location. Electron densities were obtained from density sensitive lines ratios from Fe XIII and Fe XIV. Atmospheric Imaging Assembly (AIA) observations from the Solar Dynamics Observatory are used with JHelioviewer to obtain a qualitative overview of the flare. However, AIA data are not presented in this paper. In summary, spectroscopic data from EIS are presented that can be used for predictive tests of models of chromospheric evaporation as envisaged in the Standard Flare Model.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- April 2013
- DOI:
- arXiv:
- arXiv:1212.4027
- Bibcode:
- 2013ApJ...767...55D
- Keywords:
-
- Sun: activity;
- Sun: flares;
- Sun: UV radiation;
- Astrophysics - Solar and Stellar Astrophysics
- E-Print:
- 14 pages, 1 table, 17 figures