Using the New Two-Phase-Titan to Evaluate Potential Lahar Hazard at Villa la Angostura, Argentina
Abstract
The 2011 eruption of Puyehue Volcano, located in the Cordon del Caulle volcanic complex, Chile, produced an ash plume that mainly affected downwind areas in Argentina. This plume forced air transport in the region to be closed for several weeks. Tephra fall deposits from this eruption affected many locations and pumice deposits on lakes killed most of the fish. As the ash emission occurred during the southern hemisphere winter (June), ash horizons were inter layered with layers of snow. This situation posed a potential threat for human settlements located downslope of the mountains. This was the case at Villa la Angostura, Neuquen province, Argentina, which sits on a series of fluvial deposits that originate in three major basins: Piedritas, Colorado, and Florencia. The Institute of Geological Survey of Argentina (SEGEMAR) estimated that the total accumulated deposit in each basin contains a ratio of approximately 30% ash and 70% snow. The CyTED-Ceniza Iberoamerican network worked together with Argentinean, Colombian and USA institutions in this hazard assessment. We used the program Two-Phase-Titan to model two scenarios in each of the basins. This computer code was developed at SUNY University at Buffalo supported by NSF Grant EAR 711497. Two-Phase-Titan is a new depth-averaged model for two phase flows that uses balance equations for multiphase mixtures. We evaluate the stresses using a Coulomb law for the solid phase and the typical hydraulic shallow water approach for the fluid phase. The linkage for compositions in the range between the pure end-member phases is accommodated by the inclusion of a phenomenological-based drag coefficient. The model is capable of simulating the whole range of particle volumetric fractions, from pure fluid flows to pure solid avalanches. The initial conditions, volume and solid concentration, required by Two-Phase-Titan were imposed using the SEGEMAR estimation of total deposited volume, assuming that the maximum volume that can flow at once in each of the basins is one half of the total. A second scenario assumed that half of the maximum could also happen. The volumetric solid concentration was chosen to be 30%, in agreement with the estimates of the deposited volume of the ash layers. The Argentinean National Commission of Space (CONAE) initially provided us with a digital elevation model (DEM) of 15 meters resolution. In the six simulations that we performed with this DEM we found that in all cases, the flow coming down slope in the Florencia basin stopped at the same place. A detailed survey that included a field inspection allowed us to discover that the DEM does not adequately reproduce the topography; it shows a non-existent barrier. Subsequently CONAE produced a 10 meter DEM of the area. Using this new DEM the simulation reached places not predicted by the program using the 15 meter DEM.
- Publication:
-
AGU Spring Meeting Abstracts
- Pub Date:
- May 2013
- Bibcode:
- 2013AGUSM.V43A..05S
- Keywords:
-
- 8488 VOLCANOLOGY / Volcanic hazards and risks