Space Technology 5 Multi-Point Field-Aligned Current Measurements (Invited)
Abstract
NASA's Space Technology 5 (ST 5) microsatellite constellation technology mission was launched by a Pegasus launch vehicle on March 22, 2006. The three small (48 cm tall, 50 cm diameter, 25 kg mass, spin stabilized at 20 rpm) satellites were placid in a 300 x 4500 km, dawn to dusk, sun synchronous orbit (inclination = 105.6 deg) orbit with a period of 138 min. They were maintained in this 'pearls on a sting' formation with inter-satellite spacings ranging from over 5000 km to under 50 km. Each satellite carried a miniature tri-axial fluxgate magnetometer (MAG) provided by the University of California at Los Angeles. Field aligned currents (FACs) form in response to the stress exerted on the magnetosphere by the solar wind and act as the primary mechanism for dissipating solar wind energy into the ionosphere and upper atmosphere during the solar wind magnetosphere ionosphere coupling process. ST 5 returned the first direct, simultaneous, multipoint measurements of FAC motion, thickness, and temporal variability. Current density was measured using both 1) the 'standard method' based upon s/c velocity, but corrected for FAC current sheet motion, with the assumption of a time-stationary current density profile, and 2) for the first time at low altitudes, the 'gradiometer method' which uses simultaneous magnetic field measurements at two points with known separation. Here we review the ST 5 scientific results concerning FACs and discuss their implications for future investigations of field aligned currents systems using distributed systems of spaceborne magnetometers.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFMSM53E..01S
- Keywords:
-
- 2721 MAGNETOSPHERIC PHYSICS Field-aligned currents and current systems;
- 2409 IONOSPHERE Current systems