Probing the spatial and temporal variability of Enceladus mass-loading from ion cyclotron waves
Abstract
Enceladus plays a critical role in the Saturnian system by loading a significant amount of neutrals, ions and dust into the inner magnetosphere. Enceladus is also considered as the ultimate source for the dusty E-ring and the extended neutral cloud from 3.5 to 6.5 Saturn radii. When the freshly-added neutrals are ionized and accelerated by the electric and magnetic fields, left-handed electromagnetic waves, called ion cyclotron waves (ICW), grow from the free energy of the highly anisotropic distribution of these ions. The ICWs have been widely used to probe the rate of mass loading in different plasma environments in the solar system, because the wave power is proportional to the density and energy of the pickup ions. At Enceladus, ICWs are detected by Cassini not only near the moon but throughout the extended neutral cloud in all local times. However, the wave power is largely enhanced near the moon's longitude rather than far away from it. This indicates that on top of the relatively azimuthally-symmetric mass-loading source of the neutral cloud, there is a much denser cloud of neutrals centered on the moon and rotating with it. The latter source is the instantaneous mass-loading from plume of Enceladus, and it leads to asymmetry and dynamics in the magnetosphere. We investigate all available Cassini Enceladus flyby data to obtain a 3D spatial profile of the ICW power near the moon. By comparing with waves at longitudes far away from the moon, we investigate how significant is the plume mass-loading with respect to the neutral cloud mass-loading. We also compare the waves along several groups of identical trajectories to examine the temporal variability of the plume.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFMSM21B2182W
- Keywords:
-
- 6282 PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS Enceladus;
- 2772 MAGNETOSPHERIC PHYSICS Plasma waves and instabilities;
- 5421 PLANETARY SCIENCES: SOLID SURFACE PLANETS Interactions with particles and fields;
- 7867 SPACE PLASMA PHYSICS Wave/particle interactions