Study of Fractal Features of Geomagnetic Activity Through an MHD Shell Model
Abstract
Studies on complexity have been of great interest in plasma physics, because they provide new insights and reveal possible universalities on issues such as geomagnetic activity, turbulence in laboratory plasmas, physics of the solar wind, etc. [1, 2]. In particular, various studies have discussed the relationship between the fractal dimension, as a measure of complexity, and physical processes in magnetized plasmas such as the Sun's surface, the solar wind and the Earth's magnetosphere, including the possibility of forecasting geomagnetic activity [3, 4, 5]. Shell models are low dimensional dynamical models describing the main statistical properties of magnetohydrodynamic (MHD) turbulence [6]. These models allow us to describe extreme parameter conditions hence reaching very high Reynolds (Re) numbers. In this work a MHD shell model is used to describe the dissipative events which are taking place in the Earth's magnetosphere and causing geomagnetic storms. The box-counting fractal dimension (D) [7] is calculated for the time series of the magnetic energy dissipation rate obtained in this MHD shell model. We analyze the correlation between D and the energy dissipation rate in order to make a comparison with the same analysis made on the geomagnetic data. We show that, depending on the values of the viscosity and the diffusivity, the fractal dimension and the occurrence of bursts exhibit correlations similar as those observed in geomagnetic and solar data, [8] suggesting that the latter parameters could play a fundamental role in these processes. References [1] R. O. Dendy, S. C. Chapman, and M. Paczuski, Plasma Phys. Controlled Fusion 49, A95 (2007). [2] T. Chang and C. C. Wu, Phys. Rev. E 77, 045401 (2008). [3] R. T. J. McAteer, P. T. Gallagher, and J. Ireland, Astrophys. J. 631, 628 (2005). [4] V. M. Uritsky, A. J. Klimas, and D. Vassiliadis, Adv. Space Res. 37, 539 (2006). [5] S. C. Chapman, B. Hnat, and K. Kiyani, Nonlinear Proc. Geophys. 15, 445 (2008). [6] G. Boffetta, V. Carbone, P. Giuliani, P. Veltri, and A. Vulpiani, Phys. Rev. Lett. 83, 4662 (1999). [7] P. S. Addison, Fractals and Chaos, an Illustrated Course, vol. 1 (Institute of Physics Publishing, Bristol and Philadelphia, 1997), second ed. [8] M. Domínguez, V. Muñoz, and J. A. Valdivia, Temporal evolution of fractality in the Earth's magnetosphere and the solar photosphere, in preparation.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFMSM11A2076D
- Keywords:
-
- 2788 MAGNETOSPHERIC PHYSICS Magnetic storms and substorms;
- 3270 MATHEMATICAL GEOPHYSICS Time series analysis;
- 0545 COMPUTATIONAL GEOPHYSICS Modeling;
- 4440 NONLINEAR GEOPHYSICS Fractals and multifractals