Estimates of Tropical C4 and C3 Savannah Vegetation Changes during the Holocene from Paleodata and Model Simulations
Abstract
The Savannah vegetation in Southern tropical Africa, which is characterized by co-dominance of grassland and woodland savannah, has a vast importance for global primary production. The mechanisms controlling tree-grass coexistence and the relative roles of environmental factors that determine the tree-grass proportion are not fully understood. The purpose of our study is to estimate the relative contributions of changes in climate and atmospheric CO2 to the evolution of the C3/C4 vegetation balance in the past. We use the BIOME4 vegetation model to estimate the sensitivity of the relative abundance of C4 vegetation to changes in temperature, precipitation and atmospheric CO2. The BIOME4 model is forced by temperature and precipitation anomalies from simulations of the Holocene period with the Kiel Climate Model (KCM). Precipitation reconstructed from dD of leaf wax material obtained from a marine sediment core demonstrates a tendency towards drier conditions over the Zambezi catchment area during the early Holocene. This agrees well with results of the KCM simulations forced by changes in orbital parameters. The simulations of BIOME4 forced by reduced rainfall in combination with the lower level of atmospheric CO2 (without temperature change) show an enhancement of the C4 vegetation abundance. However, the estimates of reconstructed C4/C3 vegetation ratio for the Zambezi basin retrieved from d13C of sedimentary leaf wax do not indicate a substantial trend over the last 10 000 years. We find that the growth of the C4 vegetation ratio could have been significantly attenuated by the (simulated) temperature decrease, especially during the growing season. The latter is caused by a decline in local summer insolation together with the effect of negative radiative forcing due to lower concentrations of greenhouse gases during the early Holocene.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFMPP31D1891K
- Keywords:
-
- 4928 PALEOCEANOGRAPHY Global climate models;
- 4934 PALEOCEANOGRAPHY Insolation forcing;
- 4912 PALEOCEANOGRAPHY Biogeochemical cycles;
- processes;
- and modeling;
- 4914 PALEOCEANOGRAPHY Continental climate records