Photochemical Flocculation of Terrestrial Dissolved Organic Matter (tDOM) and Iron: Mechanisms and Geochemical Implications
Abstract
Photoflocculation of DOM has received relatively little attention. No previous studies have examined the chemical composition of the flocs nor investigated the coagulation mechanisms. We observed that, after 30 days of simulated solar UV irradiation of 0.1-um filtered Great Dismal Swamp (Virginia) water, 7.1% of the DOC was converted to POC while 75% was remineralized. Approximately 87% of the iron was removed from the dissolved phase after 30 days, but iron did not flocculate until a major fraction of DOM was removed by photochemical degradation and flocculation (>10 days); thus, during the initial 10 days, there were sufficient organic ligands present and/or the pH was low enough to keep iron in solution. Although photoflocculation of iron did eventually occur, it is not clear if iron is required for the initial flocculation of DOM. Using NMR and FT-IR techniques, we found that photochemically flocculated POM was enriched in aliphatics and amide functionality relative to the residual non-flocculated DOM, while carbohydrate-like material was neither photochemical degraded nor flocculated. Based on this spectroscopic evidence, we propose several mechanisms for the formation of the flocs during irradiation. We also speculate that abiotic photochemical flocculation may remove a significant fraction of tDOM and iron from the upper water column between headwaters and the ocean, including estuaries. Fig. 1. Concentrations of dissolved (gray), particulate (black), and adsorbed (white) material as a function of irradiation time: (a) organic carbon, (b) absorption at 300 nm, (c) total iron by atomic absorption, and (d) total nitrogen. Error bars represent the combined standard deviations of the 'total,' 'dissolved,' and 'adsorbed' terms from which the 'particulate' term was calculated. Total nitrogen was not determined for the 'adsorbed' material
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFMOS53A1682M
- Keywords:
-
- 4852 OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL Photochemistry;
- 1050 GEOCHEMISTRY Marine geochemistry;
- 4235 OCEANOGRAPHY: GENERAL Estuarine processes;
- 4850 OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL Marine organic chemistry