Conditions for successful data assimilation
Abstract
Many applications in science and engineering require that the predictions of uncertain models be updated by information from a stream of noisy data. The model and the data jointly define a conditional probability density function (pdf), which contains all the information one has about the process of interest and various numerical methods can be used to study and approximate this pdf, e.g. the Kalman filter, variational methods or particle filters. Given a model and data, each of these algorithms will produce a result. We are interested in the conditions under which this result is reasonable, i.e. consistent with the real-life situation one is modeling. In particular, we show, using idealized models, that numerical data assimilation is feasible in principle only if a suitably defined effective dimension of the problem is not excessive. This effective dimension depends on the noise in the model and the data, and in physically reasonable problems it can be moderate even when the number of variables is huge. In particular, we find that the effective dimension being moderate induces a balance condition between the noises in the model and the data; this balance condition is often satisfied in realistic applications or else the noise levels are excessive and drown the underlying signal. We also study the effects of the effective dimension on particle filters in two instances, one in which the importance function is based on the model alone, and one in which it is based on both the model and the data. We have three main conclusions: (1) the stability (i.e., non-collapse of weights) in particle filtering depends on the effective dimension of the problem. Particle filters can work well if the effective dimension is moderate even if the true dimension is large (which we expect to happen often in practice). (2) A suitable choice of importance function is essential, or else particle filtering fails even when data assimilation is feasible in principle with a sequential algorithm. (3) There is a parameter range in which the model noise and the observation noise are roughly comparable, and in which even the optimal particle filter collapses, even under ideal circumstances. We further study the role of the effective dimension in variational data assimilation and particle smoothing, for both the weak and strong constraint problem. It was found that these methods too require a moderate effective dimension or else no accurate predictions can be expected. Moreover, variational data assimilation or particle smoothing may be applicable in the parameter range where particle filtering fails, because the use of more than one consecutive data set helps reduce the variance which is responsible for the collapse of the filters.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFMNG21A1460M
- Keywords:
-
- 4400 NONLINEAR GEOPHYSICS;
- 1910 INFORMATICS Data assimilation;
- integration and fusion;
- 3275 MATHEMATICAL GEOPHYSICS Uncertainty quantification;
- 3225 MATHEMATICAL GEOPHYSICS Numerical approximations and analysis