The Effect of CO2-Saturated Brines on the Hydraulic and Mechanical Behavior of Dunite
Abstract
Carbon dioxide is increasingly being used as an industrial chemical, both in enhanced oil and gas recovery and in pilot and proposed carbon capture and storage projects. Due to the high reactivity of carbon dioxide, particularly with mafic and ultramafic minerals, a better understanding of the effects of CO2-rock interaction is necessary for the safe and effective implementation of these technologies. In order to explore the effect of CO2-rock interaction on the hydraulic and mechanical behavior of ultramafic rocks, we performed hydrostatic creep tests on thermally cracked dunites saturated with distilled water and CO2-saturated brines of varying composition to observe the effect of the presence of CO2 in pore fluid on the compaction behavior and permeability evolution of the samples. Pore fluids used in these tests were distilled water, CO2-saturated 0.6 M NaHCO3 brine, and CO2-saturated 1.5 M NaHCO3 brine. Experiments were performed at room temperature and 423 K, with a confining pressure of 15 MPa and a pore fluid pressure of 10 MPa. In-situ permeability measurements were taken throughout the experiment. At the end of three day hydrostatic tests, samples were axially deformed at a constant strain rate of 10-5 s-1 to the point of failure to assess the effects of compaction and reaction on the mechanical behavior of the samples. Samples saturated with distilled water compact with a monotonic decrease in compaction rate throughout the tests, while samples saturated with CO2-brine display an increase in compaction rate toward the end of tests. All samples exhibit a modest reduction in permeability throughout the compaction. Samples saturated with CO2-brine appear to accommodate more axial shortening before the onset of dilatancy in axial deformation tests. Optical microscopy and SEM analyses were performed on the samples and reveal interplay between dissolution, precipitation and mechanical cracking.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFMMR33B2328L
- Keywords:
-
- 3902 MINERAL PHYSICS Creep and deformation;
- 1822 HYDROLOGY Geomechanics;
- 5114 PHYSICAL PROPERTIES OF ROCKS Permeability and porosity;
- 3630 MINERALOGY AND PETROLOGY Experimental mineralogy and petrology